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Abstract— In this paper, we design an energy-optimal lon-
gitudinal controller for connected automated trucks driving
in mixed traffic with lean penetration of connected vehicles.
The controller utilizes information received via vehicle-to-
vehicle connectivity from vehicles traveling ahead of the truck,
and additional delays are introduced into the control law to
improve energy efficiency. We evaluate the robustness of the
energy-optimal control parameters and calculate the amount
of energy benefits. Simulation results show 18% improvement
of energy efficiency compared to a non-connected design, and
3% improvement compared to the connected design without
additional delay.

I. INTRODUCTION

Heavy-duty vehicles take up a large proportion of today’s
freight transportation [1]. Improving fuel economy is there-
fore an important concern for these vehicles, as it brings
significant financial [2] and environmental [3] benefits. A
potential way to reduce fuel consumption is optimizing the
longitudinal control of these vehicles. It has been shown that
following an optimal velocity profile that is computed based
on geographical information (such as elevation) can lead to
significant fuel economy improvement in traffic-free envi-
ronments [4], [5], while one may also obtain improvements
in traffic with a careful control design [6].

The development of wireless vehicle-to-vehicle (V2V)
communication technologies provides additional opportuni-
ties for improving fuel economy. Connectivity allows vehi-
cles to obtain information from beyond line of sight [7], that
has shown great potential for energy efficiency when utilized
by connected automated vehicles [8], [9], [10]. Researchers
therefore are actively investigating different solutions for
exploiting connectivity and automation, such as centralized
coordination [11] or cooperative adaptive cruise control [12].
Although some of these methods require large penetration
of connectivity, which may be hard to achieve in practice, a
small amount of connected vehicles on the road can already
lead to benefits in safety and control performance [13], [14].

In this paper, we design longitudinal controller for con-
nected automated trucks (CATs) by assuming lean penetra-
tion of connectivity. We show that CATs can save significant
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Fig. 1. (a) A connected automated truck in mixed traffic consisting of
connected and non-connected human driven vehicles on a single lane road.
(b,c) Saturation function in (3) with the limits given by (4). (d) Range policy
in (7). (e) Saturation function in (8).

energy by responding to the motion of not only the imme-
diate preceding vehicle, but also connected vehicles farther
ahead. Moreover, we demonstrate that an immediate response
to distant connected vehicles may not be the optimal strategy,
but the CAT shall delay its response to achieve lower energy
consumption. Thus, we introduce additional delay in the
control law and, with some care, we use the delay as design
parameter to improve energy efficiency while maintaining
stability.

The paper is organized as follows. Section II proposes the
longitudinal control design for CATs that utilizes delayed
information from V2V communication while assuming lean
penetration of connectivity. Section III describes a design
paradigm to ensure the energy efficiency of this controller
when responding to preceding traffic. To this end, an experi-
mental dataset collected from human driven vehicles is used.
Section IV evaluates the energy efficiency of the proposed
controller and studies the robustness of the control design
against using data from different leading vehicles. Section V
summarizes the main conclusions.

II. CONTROL DESIGN

In this section, we design longitudinal controller for con-
nected automated trucks (CATs) utilizing V2V communi-



cation in mixed traffic with lean penetration of connected
vehicles. Consider the car-following scenario in Fig. 1(a)
where a CAT is driving in mixed traffic consisting of human-
driven vehicles (HVs) and connected human-driven vehicles
(CHVs). While the CAT may not be connected with all
vehicles in traffic, we assume that the position and velocity of
the vehicle immediately ahead (vehicle 1) is always available
via on-board sensors (e.g., radar or LiDAR). Furthermore,
we assume that the CAT receives information from at least
one connected vehicle farther ahead (vehicle L, L ≥ 2).
We design a longitudinal controller utilizing the information
about vehicle 1 and vehicle L.

A. Longitudinal dynamics
We model the longitudinal motion by

ḣ(t) = v1(t)− v(t),

v̇(t) = −f(v(t)) + sat
(
u(t− σ)

)
,

u(t) = f̃(t) + ad(t)

(1)

where v and v1 are the speeds of the truck and the preceding
vehicle and h is the distance headway between them. Here
ad denotes the desired acceleration of the truck calculated
from higher level control command. The term

f(v) =
1

meff
(γmg + k0v

2), (2)

captures nonlinear physical effects of the air drag and rolling
resistance [8]. Here meff is the effective mass given by
meff = m+ I/R2 containing the mass m of the truck, the
inertia I of the wheels, and the tire radius R, while γ
is the rolling resistance coefficient, g is the gravitational
acceleration, and k0 is the air drag coefficient. In order to
cancel the resistance term f(v), a compensation term f̃(v) is
often implemented by a lower level controller. For simplicity
we assume the vehicles are traveling on flat road.

The overall control input u(t) of the truck is subject to a
time delay σ that models the delay in the powertrain system.
The control input is limited by the braking torque (with
corresponding limit umin), engine torque (associated with
umax) and engine power Pmax given by

sat(u) =

umin, if u ≤ umin

u, if umin < u < ũmax

ũmax, if u ≥ ũmax

, (3)

cf. Fig 1(b), where

ũmax = min

{
umax,

Pmax

meffv

}
, (4)

cf. Fig. 1(c).
To measure the energy consumption of the CAT, we define

the overall energy consumption per unit mass over the time
interval t ∈ [t0, tf ]:

w =

∫ tf

t0

v(t) g (v̇(t) + f(v(t))) dt, (5)

where g(x) = max{x, 0}. Since w involves kinematic quan-
tities only, it can be applied to both vehicles with internal
combustion engine, electric vehicles or hybrid vehicles, with
the appropriate choice of function g [10].

B. Connected cruise control with delayed information

The proposed longitudinal controller requests for a desired
acceleration ad in (1) as follows:

ad(t) = α (V (h(t))− v(t))

+ β (W (v1(t))− v(t))

+ β̂ (W (vL(t− σ̂))− v(t)) ,

(6)

where the first term keeps a desired headway of the CAT, the
second term controls the CAT to match its speed with the
speed of vehicle 1, while the third term responds to the speed
vL of vehicle L, with control gains α, β and β̂, respectively.
The range policy V (·) describes the desired velocity of the
truck as a function of the headway in the form

V (h) =

0, if h ≤ hst,
κ(h− hst), if hst < h < hgo,
vmax, if h ≥ hgo,

(7)

as shown in Fig. 1(d). For small headway h ≤ hst, the truck
tends to stop while for large headway h ≥ hgo, the truck
tends to travel with maximum speed vmax. For medium head-
way hst < h < hgo, the desired velocity increases linearly
(with gradient κ) as a function of the headway. Finally, the
saturation function

W (v) =

{
v, if v < vmax,
vmax, if v ≥ vmax,

(8)

shown in Fig. 1(e) keeps the truck under the speed limit
when following a speeding vehicle.

Note that an additional delay σ̂ ≥ 0 is introduced in the
response to the data vL obtained from vehicle L via V2V
connectivity. The intuition behind this is if vehicle L is far
ahead (i.e., L is large), it may be beneficial to wait until
the effect of its motion propagates through the subsequent
vehicles closer to the CAT, rather than respond to its motion
immediately. While delays are often undesired as they may
lead to instability [15] and further safety hazard, they can
also improve the stability margin under some circumstances
[16]. Here we introduce additional delay in the feedback
term of vL only, and we will show that it improves energy
efficiency while the stability of the closed-loop system can
still be guaranteed.

C. Stability conditions for maintaining constant velocity

To study the stability of the closed-loop system with the
proposed controller, we linearize system (1) with (6) around
the uniform flow equilibrium given by

v(t) ≡ v1(t) ≡ vL(t) ≡ v∗, h(t) ≡ h∗, v∗ = V (h∗).
(9)

Let us define the state perturbations h̃ = h−h∗, ṽ = v−v∗,
ṽ1 = v1 − v∗ and ṽL = vL − v∗, by which the linearized
dynamics are expressed as

˙̃
h(t) =ṽ1(t)− ṽ(t),

˙̃v(t) =α
(
κh̃(t− σ)− ṽ(t− σ)

)
+ β(ṽ1(t− σ)− ṽ(t− σ))

+ β̂ (ṽL(t− (σ + σ̂))− ṽ(t− σ)) .

(10)
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Fig. 2. (a) Eight connected human driven vehicles traveling on a single-
lane road. (b) The velocity profile of leading vehicle 8 and tail vehicle 1.
(c) The amplitude spectra of the velocity profiles of vehicle 8 and vehicle 1.

In order for the truck to be able to maintain constant speed
around equilibrium (9), we require the linearized system (10)
to be plant stable [17]. Plant stability can be analyzed by
transforming (10) into Laplace domain

V (s) = T01(s)V1(s) + T0L(s)VL(s), (11)

with transfer functions

T01(s) =
ακ+ βs

s2esσ + (α+ β + β̂)s+ ακ
,

T0L(s) =
β̂se−sσ̂

s2esσ + (α+ β + β̂)s+ ακ
.

(12)

Plant stability is achieved when all roots of the characteristic
equation

s2esσ + (α+ β + β̂)s+ ακ = 0 (13)

have negative real parts. According to [17], the parameters
(α, β, β̂) need to be selected from the region given by

α > 0, (14)

ω sin(ωσ)− α < β + β̂ < ω sin(ωσ)− α, (15)

where ω and ω are the solutions of transcendental equation
ακ = ω2 cos(ωσ) such that 0 < ω < ω < π

2 . Notice that the
introduction of the additional delay σ̂ has no influence on
plant stability.

III. OPTIMAL CONTROL PARAMETERS BASED ON DATA

In this section, we propose a method to determine the
energy-optimal parameters of the proposed controller based
on the data of the preceding vehicles using the frequency
domain approach introduced in [10]. To motivate the design
method, we use trajectory data recorded on human driven
vehicles by the experiments described in [14]. During these
experiments, eight connected human driven vehicles per-
formed car-following in a single lane along a flat road; see
Fig. 2(a). Each vehicle was equipped with V2V devices, and
their position and speed were recorded via GPS. Our goal
is to select the parameters of controller (6) so that a CAT

can follow these eight vehicles in an energy efficient manner
while it uses data only from vehicles 1 and L, 2 ≤ L ≤ 8.

The experimental velocity data of vehicle 1 and vehicle 8
are plotted in Fig. 2(b). Vehicle 8 made a sequence of
mild brakes while maintaining its average velocity around
20 [m/s]. Such mild brake actions led to more severe brake
actions later by vehicle 1. This behavior, which is an example
of string instability typically seen in human-driven vehicle
chains, makes vehicle 1 waste energy by the excessive usage
of braking. Notice that the braking actions of vehicle 1 and
vehicle 8 usually have long time gaps between them, varying
from 6 seconds to 10 seconds. This observation inspires the
controller design for the CAT to delay its response to vehicle
L if it is far ahead (i.e., if L is large, such as L = 8).

To confirm the correlation between vehicle 1 and the
distant vehicle L, we write the velocity perturbations of vehi-
cles 1 and L as Fourier series with M frequency components

ṽ1(t) =

M∑
i=1

ρ1,i sin(ωit+ ϕ1,i),

ṽL(t) =

M∑
i=1

ρL,i sin(ωit+ ϕL,i).

(16)

Here the frequencies are given as ωi = i∆ω where ∆ω =
2π
tf−t0 , while ρ1,i, ρL,i denote the corresponding amplitudes
and ϕ1,i, ϕL,i indicate the phase angles. The Fourier spectra
are illustrated for the data of vehicles 1 and 8 in Fig. 2(c).
Indeed, both spectra contain major components in low fre-
quency domain, they correlate well, and the signal of vehi-
cle 1 contains larger values for most frequency components
than that of vehicle 8.

Using the transfer functions (12) at s = jωi (j2 = −1) and
the spectra of v1 and vL, we acquire the steady state velocity
response ṽ of the truck as :

ṽ(t)=

M∑
i=1

(
D1,i sin(ωit+θ1,i)+DL,i sin(ωit+θL,i)

)
, (17)

where

D1,i = ρ1,i|T01(jωi)|, θ1,i = ϕ1,i + ∠T01(jωi),

DL,i = ρL,i|T0L(jωi)|, θL,j = ϕL,i + ∠T0L(jωi).
(18)

By combining the trigonometric terms, we rewrite (17) as

ṽ(t) =

M∑
i=1

Di sin(ωit+ θi), (19)

where

Di =
√
C2 + S2, tan θi = S/C,

C = D1,i cos θ1,i +DL,i cos θL,i,

S = D1,i sin θ1,i +DL,i sin θL,i.

(20)

Given a certain set of control parameters (α, β, β̂, σ̂), one
can calculate ṽ, and then obtain the energy consumption w by
(5), both as a function of the control parameters. The optimal
design parameters are the ones that the give least energy
consumption w. According to [10], the energy consumption



w can be upper and lower bounded by a class-K function of
the cost function

J =

M∑
i=1

ω2
iD

2
i . (21)

Thus, minimizing J can give sub-optimal control parameters
close to the ones that minimize w. We remark that the
computation of J can be performed efficiently based on data
and allows updating control parameters online. By contrast,
getting w in (5) using actual response of the original non-
linear system (1,6) requires extensive numerical simulations
over a large number of control parameter combinations, and
thus, may only be acquired offline.

IV. DESIGN RESULTS

In this section we apply the design method proposed in
the previous section and evaluate the control performance.
Specifically, we simulate the scenario shown in Fig. 1 with
the speed profiles of vehicles 1 and L taken from data
(e.g., those of vehicle 1 and 8 shown in Fig. 2(b)). It is
assumed that one of the seven vehicles ahead of vehicle
1 is connected to the truck via V2V communication, that
is, 2 ≤ L ≤ 8. We consider a fully-loaded heavy duty truck
with parameters given by Table I according to [5] and we
design the remaining control parameters (β, β̂, σ̂) such that
the energy consumption is minimized.

TABLE I
DYNAMICAL AND CONTROL PARAMETERS OF THE CAT.

Parameter Value Parameter Value
m 29484 [kg] vmax 30 [m/s]
meff 29641 [kg] hst 5 [m]
γ 0.006 hgo 55 [m]
k0 3.84 [kg/m] κ 0.6 [1/s]
umin −4 [m/s2] α 0.4 [1/s]
umax 1 [m/s2] σ 0.6 [s]
Pmax 300.65 [kW]

A. Benchmark: controllers with non-delayed information

To establish a benchmark for the proposed connected
cruise controller, we consider two baseline controllers: adap-
tive cruise controller (ACC) and connected cruise controller
(CCC) with non-delayed information.

Without V2V information, the truck responds to vehicle 1
only, which is referred as ACC. We consider the ACC control
law as a special case of (6) with β̂ = 0, thus β is the
only design parameter for ACC. To calculate the energy
consumption per unit mass w for ACC, we vary β from 0 to
1 [1/s] with step size 0.05 [1/s], and we perform simulation
of (1,6) for each β value. The resulting energy consumption
is shown as a function of β in Fig. 3(a), where the minimum
value of w is 3.73 [kJ/kg] is achieved for β = 0.65 [1/s].

With V2V connectivity, the truck can receive information
from a distant vehicle and respond to both vehicle 1 and
vehicle L, which is referred to as CCC. The control law for
CCC with non-delayed information is (6) with σ̂ = 0, i.e.,
CCC has two design parameters: β and β̂. Figure 3(b) shows
the energy consumption w of CCC as a function of β̂ for
L = 8 with β being fixed to the optimal parameter value

Fig. 3. Energy consumption of benchmark controllers using non-delayed
information, i.e., (6) with σ̂ = 0. (a) Energy consumption of ACC as a
function of β for β̂ = 0. (b) Energy consumption of CCC with non-delayed
information as a function of β̂ for β = 0.65 [1/s]. (c) Energy consumption
of CCC with non-delayed information as a function of (β, β̂). The optimal
point is at the black dot with (β, β̂) = (0.05, 1.95) [1/s]. Pink and brown
planes correspond to the sections in panels (a) and (b), respectively.

obtained for ACC, β = 0.65 [1/s]. The lowest w value is
3.36 [kJ/kg] at β̂ = 1.25 [1/s], which is 9.4% lower than
that of ACC.

To explore the full performance spectrum of CCC, one
can vary (β, β̂) together. The surface depicted in Fig. 3(c)
shows w as a function of (β, β̂). We remark that the
curves in Fig. 3(a) and Fig. 3(b) are the intersections of
this surface with the pink plane β̂ = 0 and the brown
plane β = 0.65 [1/s]. CCC is able to achieve a minimum w
value of 3.16 [kJ/kg] at (β, β̂) = (0.05, 1.95) [1/s], which is
15.4% more efficient than ACC. This shows that energy effi-
ciency can be improved significantly using extra information
from V2V connectivity with just one vehicle farther ahead.

B. Benefits from delayed information

In this part we investigate the energy benefit brought by
delaying the use of information from vehicles farther ahead.
We vary three control parameters, β, β̂ and σ̂, to acquire the
optimal energy consumption w. In particular, we fix L = 8
and we vary (β, β̂) within the domain [0, 1]× [0, 2] with step
size 0.05 [1/s] and σ̂ within [0, 5.5] with step size 0.1 [s].

Figure 4 plots the contours of w in the (β, β̂) plane
for various values of σ̂. The energy contours are shown
within the plant stable domain only, whose boundary (15) is
indicated by red dashed line. Panel (a) shows the case without
additional delay, σ̂ = 0, that corresponds to Fig. 3(c). Panels
(b), (c) and (d) are associated with σ̂ = 1.5 [s], σ̂ = 1.6 [s]
and σ̂ = 3.7 [s], respectively. The figure highlights that it is
possible to reach lower energy levels by adding the delay σ̂.

The energy-optimal control parameter for each σ̂ is
marked as black dots in Fig. 4. To illustrate the optimal
parameters (β∗, β̂∗, σ̂∗), we plot β∗ and β̂∗as a function of σ̂
as depicted by the solid curves in Fig. 5(a). As σ̂ is increased,
there is a sudden change in the optimal control gains at a
certain delay σ̂cr. This can be explained by the contour plots
in Fig. 4. Around a critical value σ̂ = σ̂cr, highlighted by
Fig. 4(b,c), there are two local minima in the contour plots:
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Fig. 4. Level sets of energy consumption per unit mass w in the (β, β̂)
plane with different σ̂. Red dashed line corresponds to the plant stability
boundary (15). (a) σ̂ = 0. (b) σ̂ = 1.5 [s]. (c) σ̂ = 1.6 [s]. (d) σ̂ = 3.7 [s].

one at the upper left corner and one in the middle. When
σ̂ < σ̂cr, see Fig. 4(a,b), the top left local minimum becomes
the global optimum; while for σ̂ > σ̂cr, see Fig. 4(c,d), the
local minimum in the middle becomes the global optimum.
Apart from this sudden change, the optimal gains (β∗, β̂∗)
plotted in Fig. 5(a) show robustness, since there are slight
variations only when 0 ≤ σ̂ < σ̂cr or σ̂ > σ̂cr.

The corresponding optimal energy consumption w∗ is
depicted as a function of the additional delay σ̂ by
solid brown curve in Fig. 5(b). Indeed, there is a mini-
mum at a nonzero additional delay value (marked by the
black dot). The optimal set of parameters is identified as
(β∗, β̂∗, σ̂∗) = (0.3, 1.1, 3.7), while the optimal energy con-
sumption is w∗ = 3.06 [kJ/kg]. This is 18.0% less than the
optimum of ACC and 3.0% less than the optimum of CCC
without additional delay.

However, (β∗, β̂∗, σ̂∗) may not be available online in prac-
tice, as finding it requires exhaustive brute force numerical
simulations over the parameter space (β, β̂, σ̂). The cost
function J introduced in (21) can avoid the simulation while
still perform the parameter search. The dashed curves in
Fig. 5(a) show gains (β∗

J , β̂
∗
J) that minimize the cost function

J , whose minimal value J∗ is plotted in Fig. 5(c). The opti-
mal gains (β∗

J , β̂
∗
J) show robustness against the delay σ̂ and

approximate the results (β∗, β̂∗) of numerical simulations
for σ̂ > σ̂cr. The energy consumption w∗

J corresponding to
(β∗
J , β̂

∗
J) is close to the actual w∗ associated with (β∗, β̂∗),

as shown by the dashed brown curve in Fig. 5(b). The
parameters minimizing J are (β∗

J , β̂
∗
J , σ̂

∗
J) = (0.3, 0.95, 4.2)

with energy consumption w∗
J = 3.09 [kJ/kg]; see the blue

points in Fig. 5(b,c). The optimal parameters and energy
consumption of the various control designs are summarized
in Table II. These results are practically achievable while
being close to the results of numerical simulations.

0 1 2 3 4 5

0.5

1.0

1.5

0 1 2 3 4 5

3.0

3.1

3.2

3.3

Fig. 5. Comparison between cost function-based design and optimal
parameter choice. (a) Optimal choice (β∗, β̂∗) of the control gains as a
function of the additional delay σ̂ (solid curves), and the choice (β∗

J , β̂
∗
J )

suggested by the cost function-based design via (21) (dashed curves). (b)
Optimal energy consumption per unit mass w∗ (solid brown curve) and
energy consumption w∗

J of the cost function-based design (dashed brown
curve). (c) Optimal cost function J∗.

TABLE II
COMPARISON OF VARIOUS CONTROL DESIGNS.

σ̂[s] β[1/s] β̂[1/s] w[kJ/kg] Energy Saved
ACC - 0.65 - 3.73 -

CCC
0 0.05 1.95 3.16 15.4%

3.7 0.30 1.10 3.06 18.0%
4.2 0.30 0.95 3.09 17.2%

To understand the reason behind additional energy saving,
in Fig. 6 we show the simulation results for (1,6) with
the optimal parameters (β∗, β̂∗, σ̂∗) and (β∗

J , β̂
∗
J , σ̂

∗
J), as

the black and blue curves, respectively. We also plot two
benchmark scenarios: ACC in pink and CCC with σ̂ = 0
in brown. The proposed control design with the additional
delay leads to smoother velocity profile and eliminates abrupt
acceleration and deceleration. In addition, the proposed al-
gorithm maintains a smaller average headway compared to
the benchmark, i.e., the energy benefits do not compromise
the capacity of the traffic flow.

Finally, we investigate the effect of having connectivity
with different leading vehicles (i.e., having different L). So
far, we have assumed that the CAT responds to leading
vehicle 8. In practice, however, the number of vehicles
between the CAT and the leading CHV (the value of L) may
not be available. Fig. 7 depicts w∗ and w∗

J as a function of σ̂
for leading vehicles ranging from vehicle 2 to vehicle 8, i.e.,
L = 2, 3, . . . , 8. When the CAT responds to vehicles farther
ahead (shown by larger L), the overall energy consumption
is lower. This can be explained by the string instability of
human drivers as the data of vehicles closer to the CAT have
larger speed fluctuations than the vehicles in the distance. On



Fig. 6. Simulation results with a heavy-duty truck following preceding
vehicle 1 and leading vehicle 8. Pink curve correspond to ACC with
optimal parameter β = 0.65 [1/s], which only involves response to the
preceding vehicle. Brown and black curves correspond to CCC with optimal
parameters (β∗, β̂∗) and different additional delays: σ̂ = 0 and σ̂ =
3.7 [s], respectively. Blue curve corresponds to the parameters (β∗

J , β̂
∗
J , σ̂

∗
J )

obtained from optimizing the cost function J . The parameters of the
simulation are listed in Tables I and II. (a) Headway profiles. (b) Velocity
profiles.

the other hand, the crosses in Fig. 7(b), which correspond to
the delay σ̂∗

J minimizing the cost function J , show that the
additional delay may be beneficial only if the leading CHV is
far enough (i.e., L ≥ 5 in this example). Finally, responding
to vehicles farther ahead (having larger L) is associated
with larger optimal additional delay σ̂∗

J . In summary, the
proposed cost function J allows one to estimate the optimal
parameters, regardless the value of L.

V. CONCLUSION

In this paper, we proposed an energy-optimal longitudinal
controller for connected automated trucks in mixed traffic
with lean penetration of connected vehicles. The controller
relies on the position and speed of the vehicle immediately
ahead of the truck and the speed of at least one connected
vehicle traveling farther ahead, which is obtained by vehicle-
to-vehicle communication, and uses delayed information
about the motion of the distant vehicle. We used a data-
driven approach to optimize controller parameters for energy
consumption. The simulation results based on real data
showed that even when only one vehicle is connected to
the truck a significant improvement in energy efficiency can
be achieved. When this connected vehicle is far ahead, using
delayed information brings additional energy benefit, while
control parameters are robust against the introduction of the
additional delay. Investigating the robustness with increasing
penetration rates of connected vehicles is left for future
research.
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